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On what
schedule
should noise
be removed?

Deterministically
“fade out” noise,
vs. replace it?

Differ vastly in Practical
design choices like at what
rate do you reduce the noise
level at different stages of
the generation
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How do you deal with the VaStly denoiser denoiser denoiser denoiser denoiser denoiser denoiser denoiser
different signal magnitudes at

different stages of this process

and how do you predict the N
signal or the noise Normalization?

Where to implement it?

Large numerical scale of the noise? _ _ _
Predict noise or clean image?

Training effort per noise level?



Youtube Presentaiton

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Differential equation formalism

by Y. Song et al. (2021)

* Image evolves according to a stochastic differential equation (SDE)
* Also deterministic ordinary differential equation (ODE) variant

* Generalizes existing methods, in principle
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Outline

* Part I: Common framework
* |dentifying the moving parts in existing work

* Part |I: Deterministic sampling
* Solving the ODE efficiently

* Part Ill: Stochastic sampling
* Why SDE’s? How to do stochastic stepping?

* Part IV: Preconditioning and training
* How to train the CNN used in evaluating a step?

* We will not study network architectures (what layers to use, etc)!
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ABSTRACT

Creating noise from data is easy: creating data from noise is generative modeling.
We ptutnlnmdmﬁicdim:muliﬂuqulim(sbﬁl \hat smoothly transforms a com-
plex Jata distribution 10 a known prios distribution by slowly injecting noise, and a

ing reverse-time SDE that transforms the prior distribution back into the
data distribution by slowly removing the noise. Crucially, the reverse-time SDE
depends only on the time-dependent gradient field (k.. score) of the perturbed
data distribution. By uging inm-mdgummm:im.m
can accurately estimate these scores with neural petworks, and use numerical SDE
mmnmp\muum;w.w:mmum vork encapsul previous
approaches in score-based g i teling and diffusion probabili tic mod-
cling. allowing for new sampling procedures and new modeling capabilities. In
particular, we i duce a predi ork 10 correct emrons in the
evolution of the discretized reverse-time SDIE We also derive an equivalent neural
ODI that samples from the same distribution as the SDE, but additionally enables

: ' ) o £

exact likelihood P p In addition, we
plwkiumwlylowlv:impmbkmwilhmhwdmxkls.am
strated with experi on cl itional jion, image inpainti

P o
colorization. Combined with multiple architectural iy s, we achieve
record-breaking performance for unconditional image generation on CIFAR-10
with an Ingeption score of 9.589 and FID of 2.20, 3 competitive likelihood of 2.99
bits/dim, and high fidelity gencration of 1024 X 1021 images for the
first time from a score-based generative model.

1 INTRODUCTION

“Two successful classes of probabilistic penerative models involve sequentially corrupling training
data with slowly increasing noise, and then learning to revene this <0 jon in order to form a
generative model of the data. Score maiching with Langevin dymmfir: t_SMLD) (Song & Ermon,

Hur.ul‘.M)wmawulmliﬂmmammmhmdwmm
O et af the functional form of the mdiﬂﬁwummmkﬂniningwubic. JFor
e mtas wrowes at cach noise scale.
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ABSTRACT e

plex data distribution (0 a known priof distribution by slowly injecting noise, and a
ing reverse-time SDE that transforms the prior distribution back into the

Jata distribution by slowly removing \he noise. Crucially, the reverse-time SDE
depends only on the . k.., score) of the perturbed
data distribution. By Jeveraging advances in ed generative modeling, we
can accurately estimate hese scores with neural networks, and use numerical SDE
solvers to generale samples. We show that this ork encapsul ous
hes in score-based generalive modeling and diffusion probabi
eling. allowing for new sampling procedures and new modeling capabilitics. In
particul we i duce a predi cl ork 10 corect erors in the
evolution of the discretized revense-time SDE. We also derive an equivalent neural
QDI that samples from the same distribution as the SDIZ, but additionally enables
exact likelihood comp 3 improved sampling efficiency. In addition, we
provide a new way (o solve inverse problems with score-based models, as demon-
strated with exp on class-conditional g ion, image inpainting, and
colorization. Combined with multiple architectural improv ts, we achieve
record-breaking perfl ce for unconditional image g ion on CIFAR-10
with an Inception score of 989 and FID of 2.20.a competitive fikelihood of 2.99
bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the
first time from a score-based generative maodel.

.
Creating noise from data is easy: creating data from noise is generative modeling. . . "
We pmamhulicdil‘l'u:mhl cquninnGSDE)lh:lmnhly transforms a com I S I n g I l l S I 0 n

1 INTRODUCTION

Two successlul classes of probabilistic generative maodels involve sequentially corrupting training
data with slowly increasing noisc, and then leamning to revense this corruption in order 1o form a
generative model of the data. Score matching with Langevin dynamics (SMLD) (Song & Ermon,
2019) estimates the score (L.€., the gradient of the log probability density with respect 1o data) at cach
noise scale, and then uses Langevin dynamics 10 sample from a sequence of decreasing noise scales
during generation. Denoising diffusion probabilistic modeling (DDPM) (Sohl-Dicksiein et al., 2015:
Ho ¢t al., 2020) trains a scquence of probabilistic models to reverse cach step of the noise corruption.
O ietor of the functional form of the reverse distributions 10 make (raining (ractable. For
Py e mrennutex scores al each noise scale.
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Data distribution from Dataset
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X

pixel values

Learn to produce novel samples
from this distribution

Data distribution

* Data lives in high
dimensional space
of pixel values

* We'll visualize in 1D

Draw a sample

increasing noise level
.

Increasing time which is an essential
increasing noise level

11
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Data density is
diffused over time

* All data ends up
normally
distributed

* The density of the data on the left edge becomes diffused
over time until it's completely normally distributed at the end.

» We can sample from this normal distribution at the right edge

we just call random in pytorch.

14
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Data density is

diffused over time We can reverse the

trajectory by gradual
denoising
« All data ends up
normally
distributed
* Let’sdraw a
sample...
T L] Ll *
X * They'll give us a sample from
Il that edge.

* There exist to sort of reverse
this path so go backward in
time.

* Land us on the left edge that
have the density of the actual
data - Generate an image

15
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We canreverse X
the trajectory by
gradual denoising

* Endpoint is a
random sample
from data
distribution!
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Forward and
reverse SDE

* Evolution governed
by a stochastic
differential
equation (SDE)

* We'll generalize
these later!

score function

1 1 I tI
+ The change in image dx, equals dw which is a * This forward equation corresponds a backward version that has this same
white noise so that's just the mathematical stochastic component random walk component.

expression of doing cumulative sum of « Score function: Term that kind of attract the samples towards the data
random noise. density you see some kind of a gradient of log of the data density. p is
unknown

17
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Can be evaluated by denoising!

Forward and
reverse SDE

* Evolution governed
by a stochastic
differential
equation (SDE)

- * We'll generalize
score function these later!

Can be evaluated by denoising!

- (D@io) - 2)/o”

* You do not need to know the P if you have
an optimal Denoiser for this data set so you

can directly evaluate that formula

.: (%’IT) — a’:)'/(72

* This is an opportunity we train a neural network to be
such a denoiser. This means that we can run this kind of
backboard equation Evolution using that learn D.

t

18
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Deterministic ODE

* Song et al. also
present a
deterministic
ordinary differential
equation

Don't have the
stochastic term.

Have the core
term scaled in a
way.
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Solution by
discretization

Try to somehow
follow flow lines
to do the
generation and in
the way that
happens is by
discretization.

X

for a given change in time t

For any change in time | want to jump, the ODE formula tells me
how much the image changes and again the ODE formula is
evaluated this neural network, so the Network tells us where to

go on the next step that's the general idea. -
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X

for a given change in time t

Solution by
discretization

* In stochastic
sampling (SDE), we
would also inject
noise at every step.

* We'll leave that for
later and focus on
the ODE first.

21
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start from
random
noise

I’l ||III 'IIII I'I"IIJ -‘

U L L | I !'IJ

CNN CNN CNN CNN CNN CNN CN
denoiser denoiser denoiser denoiser denoiser denoiser denoiser denoiser
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g&wﬁmﬁgﬁ Next, let’s identify some

B e design choices from

e different methods, and
generalize.

w-ﬂw-«hnm, gencration of 1024 = 1024 images for the
wuulmn«mludpmw«nﬂrl

1 INTRODUCTION

Two succenful classes of probabilntic generative maxdels imvolve sequentially comupling tratning
data with showly mmﬂn-‘.-dmmlmmmwamnlnuﬂumlu-u
poncrative model of the data. Score matching with Langevin dymamics (SMLD) (Song & Bamon,
2019) estimates the smltr,mwdmqummmmmmm
uxuﬂ.dhﬂmm—mwu—ﬂﬂm MOQUCTRE
dunng g I diffusiem p halistic mosbel {'I)I)f'Ml(.\'xhl-lMl-kmﬂ ol 2015;
lk-nﬂ.!@sm-wdﬂmﬂhmm
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Error sources

1. Network fails to
approximate the
true score of data

t

* When | do this sampling chain, the obvious one is that if the network
gives me an incorrect direction and | end up moving in the incorrect
direction and in the end | end up somewhat in the wrong place.

24
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Error sources

1. Network fails to
approximate the
true score of data

2. Approximating
ideal trajectory
by finite steps

t '

* Try to approximate this continuous trajectory in green here using these linear segments.
 If try to jump too far at once, the curve will kind of move away from our feet.

25
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Error sources

1. Network fails to
approximate the
true score of data

2. Approximating
ideal trajectory
by finite steps

t

» Brutal solution is to take more steps but more compute to generate an image.

26
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fill  Training
Agnostic of usage as part of ODE/SDE stepping
Should be analyzed

independently! P )
HESE »*“*" Sampling

Similarly, agnostic to how the network was trained

1. Network fails to
approximate the
true score of data

2. Approximating

ideal trajectory
by finite steps

* You don't have to sample in a certain way just because you train your neural network in a

certain way and so on you can decouple this.

» We'll be looking at sampling first and then coming back to the training later.

27
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Add noise at constant rate =2
stdev grows as square root of time

* Noise schedule where the noise level
increase as a square root of time because
that's how the variance grows linearly, so the
standard deviation grows square root.

Noise schedule

* Add noise at
different rate 2
different ODE

* Many schedules in
literature

X

Add stdev at constant rate by accelerating the rate of
added noise over time
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Noise schedule X

* Add noise at
different rate =
different ODE

* Many schedules in
literature

* All of them simply
warp the t-axis
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Our generalized ODE allows for directly
specifying any a(t)

dez = —5(t)o(t)Vy log p(; a(t))-dt

<

* Generalize ODE

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Our generalized ODE allows for directly
specifying any o ()

do = —(Ha(O)Vs lepleiot) T

Our generalized ODE allows for directly
specifying any o (t)

dz = —5(t)o(t) Vs logp(z; o (t)) dtu

* We can parameterize the noise level we want to have
reached by explicitly by this Sigma function.

>

t

t

>
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Noise schedule
vs step lengths

How to direct more effort (accuracy)
to desired noise levels?

+ Almost nothing happens until at almost zero
time, noise level suddenly curves rapidly to one
of these two basins and there's high curvature.

* There's two ideas of how you might do that.

» Careful in sampling that region and less careful
here in the bulk

31
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Noise schedule
vs step lengths

* Two options:

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

* Take shorter steps
at desired levels

* Warp noise
schedule to spend
more time at those

levels
<
» Take shorter steps at the more
difficult parts usually it's the These two approaches are not equivalent.

low noise levels

]d

Noise schedule
vs step lengths

* Two options:
* Take shorter steps
at desired levels
* Warp noise
schedule to spend
more time at those
levels

The error characteristics can be vastly different between these choices like
the eror that comes from tracking this continuous curve.
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Youtube Presentaiton
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VE

iDDPM

+ DDIM

Ours

Sampling

Time steps ticN

Sampling time

Schedule o(t)
Noise schedule
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Signal scaling X

—

« Zoom out a little because in reality we add a ton of noise,
the noise level is very large at the other extreme.
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Signal scaling

CNN I

Low scale signal

 If don't do anything, the signal magnitude grows as the noise level grows -
Keep piling noise

* The signal is quite simply bigger numerically
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X , | Signal scaling Signal scaling

CNN I I CNN

Signals are much larger at the high noise levels than in
¥ the low noise levels.

t High scale signal — To be really bad for neural network training dynamics.

— Actually critical to deal with to get good performance.
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Variance preserving (VP) scale schedule Signal scaling

e ||Iﬁ||
o(t) o

1
| s(t) mv

1 L T I

Variance Preserving (VP) Scale Schedule

» Scale schedule : Squeeze the signal magnitude into the constant variance
tube so that makes the network happy
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Scaled ODE

| We further generalize the ODE to allow for any choice
= of J(t), S(t)

Signal scaling

I CNN

da = [8(t) z/s(t) — s(t)? 6(t) o(t) Ve log p(x/s(t): o(t))] di

t t

* Formulating an ODE that allows you to directly specify any
arbitrary scale schedule.

* The only thing that the scale schedule does is distort these
flow lines in some way.
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Scaled ODE

We further generali
of o(t), s(t)

da = [5(t) z/s(t) — s(t)* o(t) o(t) Va log p(=

39



Youtube Presentaiton

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Alternatively : Initial Scaling layer

Alternatively: precondition network by input scaling

Signal scaling Alternatively: precondition network by input scalin,

Signal scaling

Is [l

I CNN I

Quite simple Instead of changing ODE

Initial scaling layer tha uses the known
signal scale
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X | signal scaling Signal scaling

Alternatively: precondition network by input scalin
o I CNN I

IIIIIII’

‘IIIIIIIIII

Scaled ODE and network input scaling are not equivalent

Because the error characteristics are vastly different between
these two cases.
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VP VE iDDPM + DDIM Ours
Sampling
‘me steps S o ] 2 2 2 \N=T |, .
Time steps tien 14 g=g(es—1) 02 (02in/02ax) U jo Mo1zdo 1 |» Where
uy =0 ?

Noise Uuj1= maf—ivm‘l *
schedule i o edhile o(t) Velbt+But _1 |/t t
Scaling Scaling s(t)  1/VedPat?+Buint 1 1
schedule Network and preconditioning Skip scaling  cyip(o)

Output scaling cou (o)

Input scaling

('in((")

Noise cond. cpoise()

1/Vo? +1

Input scaling  ¢jy(0o)

1 1/VoZ+1

Identified the design choices the scaling & schedule and
the scaling that happens inside the neural network itself
that we count as a so-called preconditioning of the

neural network.
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

VP VE iDDPM____ + DDIM Ours

Sampling
Time steps tien 14 (e —1) O (O R foa, ) Tt W jo4 Moizdo 1), Where

uy =0

u?+1

Uj=1= | (@ 173500 L
Schedule o(t)  Ve2Pt*+Bant _] Vit t
Scaling s(t)  1/V ePat?+Bmint 1 1

we'll use pre-trained networks from
previous work for now...

and return to training in Section IV

We’'ll just try to improve the sampling;
Deterministic & Stochastic sampling.
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Outline

* Part I: Common framework

* [dentifying the moving parts in existing work

* Part |I: Deterministic sampling
* Solving the ODE efficiently

IHNIRPIHNNE
i L=
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X

Noise Schedule o (t)

X Noise schedule

* Why are some
better than others? |
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Noise Schedule o (t)
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Noise Schedule o (t)

X X

<
More successful when the tangents Bad schedule : a visible gap between the
happen to coincide with this curve tangent and the curve
trajectory and so the trajectory is as ] ]
Easily fall off if you try to step too much.

straight as possible
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Noise Schedule o (t)

X

Random family of different schedules

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Noise schedule

* Why are some

better than others?

* Straighter
trajectory

- less need to
“correct course”
along the way

-> fewer steps
suffice
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Noise Schedule o (t) Scling Schedule s(t)

X We advocate the We advocate the
“linear” schedule “linear” schedule
(same as DDIM): (same as DDIM):
o(t)=t o(t) =t
s(t) = s(t) =1
Note: We'll normalize
signals by
preconditioning rather
than scaling the ODE.
But more on that later. dx = —t Vlog ps(x) dt

We'll be leaving the scaling for Neural Network parameterization.

The reason for that is that the scaling also introduces unwanted
curvature into these lines.

As a further with this the ODE becomes very simple
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Noise Schedule o (t) Scaling Schedule s(t)

X X We advocate the
“linear” schedule
(same as DDIM):
o(t) =t
s(t)=1

This schedule allows us to take long If | take a step directly to time zero, then with
steps only these schedules, the tangent is pointing
directly to the denoise output.
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> t > t

Mean that the direction you are going to doesn’'t change almost at all

The denoise output changes only very slowly

during the sampling process.
So it means you can take long bold steps and you can consequently

only take a few steps or many fewer steps than with the alternatives.
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Varying step length Take different length steps at different stages
of the generation
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Varying step
length

* All previous
methods effectively
use shorter steps at
low noise levels

* A polynomially
growing step
length captures the
essence of these
schemes. We find
the optimal growth
rate empirically.
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Higher-order solvers

X Higher-order
solvers

* Clever sub-steps =2
higher accuracy,
higher cost

* Empirically, 2nd
order Heun
method strikes best
balance

ODE framework allows you to do which the Markov chain
formulas uses the higher-order solvers, so there is going to be
curvature.
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Higher-order
solvers

* Clever sub-steps =
higher accuracy,
higher cost

* Empirically, 2"
order Heun
method strikes best
balance

> t

It can be rapid at places, so you can fall of the
track if you just follow the tangent by using the

Euler step
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2nd order Heun step

P——

Heun step @

4

E

Heun's method : 1) Take the second tentative Strike the best balance between these higher-
step and move it back to where you started order methods
from, 2) Take average of that and the initial one
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vp VE iDDPM + DDIM Ours
Sampling
ODE solver Euler Euler Euler 2" order Heun
: : : 1

Time steps tien 14+ gig(ea—1) o2 (o Jad YT U ot Meido ;4 1 |» Where (ama e ) -
UM =( 'N":i'(a'min""amaxp))
Uj-1= \/ e e

Schedule o(t) \/e%"d"""‘ﬁ*"" -1 Vit t t

Scaling s(t) 1/\/ ¢ 7 Bat?+Buint 1 1 1

Network and preconditioning
Output scaling cou (o)
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Evaluation of discretization & solver

FID FID
200 500
100 | 200
50
20
10
5

3
2,

| FID|

‘ 20

10 |

21

16 32 64 128 QFﬁal

128 256 51 . 8 32 128 512

NFE=8 16 32 64

(a) Uncond. CIFAR-10, VP ODE (b) Uncond. CIFAR-10, VE ODE (c¢) Class-cond. ImageNet-64, DDIM

In\agenet
64 X 6*

2048

8

=== Original sampler

Need to take something
like a hundreds or even
thousands of steps to get
kind of saturated quality
and to get the best quality
that model gives you

NFE (the number of
neural function
evaluations) : Forward
pass S0 HA| 2 nj2}
OJE{7} SAHO|L} A LhE[ R
=715 2|0[5= X| &
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Evaluation of discretization & solver

FID FID FID
200 500 | 20
100 200
50 100 10
50
20
10 9 P —— G
« = 10
3 5 -
2y 2
NFE= 16 32 64 128 256 512 1024 8 32 128 512 2048 8192 8 16 32 64 128 256 512 1024

(a) Uncond. CIFAR-10, VP ODE (b) Uncond. CIFAR-10, VE ODE (c) Class-cond. ImageNet-64, DDIM

=== Original sampler

Heun & Our discretization schedule : Go to from
hundreds to dozens of evaluations == + Heun & our {t;}
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Eva I U atIO N Of SC h ed u |e Noise schedule and Scaling schedule

FID FID FID

200 500 20

100 200

50 100 10
50

A 20

l? 10 4—

J -

3 J

24 2

NFE=8 16 32 64 128 256 512 1024 8 32 128 512 2048 8192 8 16 32 64 128 256 512 __1024

(a) Uncond. CIFAR-10, VP ODE (b) Uncond. CIFAR-10, VE ODE (c) Class-cond. ImageNet-64,\D

=== Original sampler

Further improves the results by a large
amount except in the DDIM which was == + Heun & our {t;}
already using those schedules — +Our o(t) & s(t)
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Evaluation of schedule

2, 2
NFE=8 16 32 64 128 256 512 1024 8 32 128 512 2048 8192 8 16 32 64 128 256 512 1024

(a) Uncond. CIFAR-10, VP ODE (b) Uncond. CIFAR-10, VE ODE (c) Class-cond. ImageNet-64, DDIM

=== Original sampler

=== + Heun & our {t;}
=+ Our o (t) & s(t)
= =« Black-box RK45
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Outline

t Il: Deterministic sampling
» Solving the ODE efficiently
* Part lll: Stochastic sampling
* Why SDE’s? How to do stochastic stepping?

_.Jllj" «J 8 JARA0
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ODE vs SDE

Instead of following these nice smooth flow trajectories, the SDE is sort as some kind of exploration
around that baseline so it can be interpreted as replacing the noise and reducing it.

In practice you tend to get better results when you use the SDE instead of the ODE at least in
previous works

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

ODE vs SDE

* ODE gradually
fades the noise out
without changing it

* SDE injects fresh
noise throughout
evolution
-> noise is not only
reduced, but also
replaced at some
rate

* Let’s first pick this
apart, and then see
why it’s useful
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Generalized

Our generalized SDE lets us control the
noise replacement schedule [ (t)

\/\23(1)00)&.;,

da =l —a(t)o(t) Ve log p(z: o(t)) d’ e 3([)\0/(!‘.)2V= logp(x:o(t)) dt +

SDE

Our generalized SDE lets us control the
noise replacement schedule (t)

dey = —a(t)o(t)Ve ]ogp(.t:a(t)) dt £ B(t)o(t)* Ve logp(z: a(t)) dt + /28(t)a(t) duw

B ~0

t

Generalized SDE allows you to specify the strength of this exploration by this

noise replacement schedule g(t)
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Generalized SDE

Our generalized SDE lets us control the
noise replacement schedule (3(t)

dzy = —6(t)o(t) Vi log p(z: o(t)) dt £ B(1)a(t)* Ve logp(x: o(t)) dt + /28(t)o(t) dwe

t

B(t) T : Boosting — More exploration

Our generalized SDE lets us control the
noise replacement schedule (3 (t)

Example:
y only replace noise within
this time interval -

elsewhere, evolve
deterministically

dzs = -6 (t)a(t)Ve logp(z:o(t)) dt £ B(t)a(t)* Ve logp(z: a(t)) dt + /25(t)o(t) dwy

1 I 1 1

t
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Our generalized SDE lets us control the | Our generalized SDE lets us control the Generalized SDE

noise replacement schedule (3 (t) noise replacement schedule [3(t)

* Nice trick, but
doesn’t it still just
go through the
same distributions
as ODE?

* Empirically,
stochasticity does
improve results.
Why?

1 dzs = —6(t)o(t)Ve log p(z:o(t)) di

N des = —6()0()Ve logp(z:0(1)) dt

t t
dzy = —5(t)o(t) Ve log p(z; a(t)) dt |+ B(t)o(t)* Ve log p(x; o(t)) dt + \/2B(t)o (t) duws,
probability flow ODE (Eq.[T) deterministic noise decay noise injection

Langevin diffusion SDE 67
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dzy = —6(t)o(t)Ve logp(z;o(t)) dt £ 3(1)o(t)* Vi log p(x; o (1f+ \/ iI(t)o(t) (lu,t

N
_— ~

probability flow ODE deterministic noise decay

-

noise lnju.l ion
-

Langevin diffusion SDE

Shapes the trajectories, Randomly explores the
such that they pass distribution p, at time t, driving
through the desired the samples towards it

distributions p, at time t

Driving towards the distribution and It makes the samples explore the distribution.
making it follow the flow lines If the samples are not distributed correctly, it will

reduce that error. Healing property
— Because we do make errors during the

sampling, it can actively corrects for them -
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» Why the stochastic is helpful?

Langevin diffusion

Samples blue dots
in Bad case (not
follow the
underlying
distribution at all)
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> Why the stochastic is helpful? If keep following ODE, do nothing to correct that skew and completely miss
the other base data

incorrectly

ODE maintains
incorrect distribution
att=0

distributed
intermediate

samples at

time t>>0 | B

incorrectly
distributed
intermediate
1 T Ll 1
t e —— samples at
time t>> 0 BN

Skewed to one side
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> Why the stochastic is helpful? Langevin diffusion

Stohasticity — random exploration 4 Cover both modes

‘ o' N FRIJ'VM%‘?
- QAN @

So these samples do this kind of random exploration and gradually forget where they
came from and forget the error and initial position.

And now we've covered both modes for example in the generated images on left edge.
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Langevin diffusion

* The main benefit
of SDE over ODE is
the implicit
Langevin
exploration

* Could we instead
PO s e i o e simply combine
SDE actively corrects for W AT T the higher-order
errors over time ODE solver and
through Langevin Langevin diffusion?
exploration
T T T —_——

t Answer

Our stochastic sampler
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Stochastic Sampler
Two substeps 1)

Our stochastic sampler

X

Our stochastic sampler X

* At each step i * At each step i:

* We are at noise
level t;

* Add noise to reach
noise level y;t;

* Here, y; specifies
Langevin strength

Noise level t; — Act completely equivalent with the time
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Stochastic Sampler

2) 1) Two substeps

Our stochastic sampler

* At each step i:

* We are at noise

level t;

1) = Add noise to reach
noise level y;t;

2) « Solve ODE
backwards to the
next time step t; 44
(with single Heun
step)

* Here, y; specifies
Langevin strength
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Stochastic Sampler

Our stochastic sampler

* At each step i

* We are at noise
level t;

* Add noise to reach
noise level y;t;

* Solve ODE
backwards to the
next time step ;41
(with single Heun
step)

* Here, y; specifies
Langevin strength

Alternating between the noise addition ODE guide these lines.
and the Heun step as closer to time zero. We now have the juttering which corrects errors.
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... but also
introduces
error of its own

-

b o

Stochasticity
corrects for
error...

,

Image: winnifredxoxo at Flickr

Get these errors correct reaction but it's Quite delicate balance how much make error

not actually free because the Langevin . .
diffusion is also an approximation of Need to Fune the amqunt of stochasticity on a data set
per architectural basis

some continuous thing.
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FID
3.2

3.0
28
2.6
24
22
2.0
1.8

Evaluation

FID
3.0

2.8
2.6
2.4
2.2 %
2-0 ................
1.8
1.6
1.4

--------

NFE=16 32 64 128 256 512 1024 2048 16

(a) Uncond. CIFAR-10, VP (b) Uncond. CIFAR-10, VE (c) Class-cond. ImageNet-64

SDE solvers are better but very slow

32 o

128 256

512 1024 2048 16 32 64 128 256 512 1024 2048

- Deterministic (ODE)
=== Original sampler (SDE)
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Evaluation

FID FID
3.2 3.0
3.0 2.8
28 26
26 2.4
2.4 22
22 2.0
2.0 1.8
1.6
1.8 20 223 1.4 1.55
NFE=16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048
(a) Uncond. CIFAR-10, VP (b) Uncond. CIFAR-10, VE (c) Class-cond. ImageNet-64
Optimal seetings of SDE solvers : Both — Deterministic
much better quality and much faster === Original sampler

- Optimal settings
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FID
3.2

3.0
2.8
26
24
2.2
2.0
1.8

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Evaluation

i B L
from 2.07 to 1.55
(SOTA at the time)

FID
3.0

28
2.6
24
2.2
2.0
1.8

) L6
1.4

NFE=16 32 64 128 256 512 1024 2048

(a) Uncond. CIFAR-10, VP

16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048

(b) Uncond. CIFAR-10, VE (c) Class-cond. ImageNet-64

— Deterministic

==« Original sampler

-~ Optimal settings

- == Jolicoeur-Martineau et al. [23]
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Outline Outline

* Part lll: Stochastic sampling  Summary (82|) t 111: Stochastic samplin;
* Why SDE’s? How to do stochastic stepping? e SDE’s? Hc 4o st

* Part IV: Preconditioning and training
* How to train the CNN used in evaluating a step?
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Recall two sources of error

4® ¢ Discretized steps in sampling
#” * We studied this with pre-trained networks

v

* Inaccurate neural denoiser, a.k.a. score function

“lll“ Next up:

* Improved network preconditioning (e.g., input and output scales)
* Improved training (loss scaling, and what noise levels to train at?)

* We will not change the layer architecture, etc. (much)
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X Recall...
/
) dt //
o ,,a—l * ODE step uses the
- score function
e dx * ... which can be
computed using a
. gt 2 pt(x) de denc?iser :
1 * ... which we
Y (x — D(x;1)) dt approximate with a
1 neural network
) = — (x— ([} ) dt
t CNN

ODE Role Give us the step direction by
the score function, evaluated using a
Denoiser which can be approximated
using neural network

The role of neural networks tells where to

go in a single step or what direction you
need to go to
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image

Noise
4 Bad idea

random noise
level

o

Actually a bad idea to directly connect
the noisy image to the input of the
network or to read the denoised image
from its output layer.

z Let's look at Denoiser itself
o before we go to the loss weight

LOSS

r-\ _ * mean
L) I square

loss weight

—

e

Denoiser do someting that minimizes the L2
denoising loss

DENOISER

You can do this separately at every noise level,
so can weight this loss according to the noise
level 83
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Preconditioning
* To make things easy for the CNN: + Want to wrap it between some kind of a signal management
(A) Always feed unit stdev inputs to networks layers to manage those signal scales of both the input and the

output to standardize them.

(B) .. and train with unit stdev targets + Often recycle from the input because if the input image is

almost noise free, then we don't really need to denoise much.
* Networks make errors. We should
(C) minimize network’s contribution to output of the denoiser

* Our noise levels vary wildly, so this is critical! - Should copy just what we know and only fix the remainder
we're going to come to that soon.
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Training data image

Youtube Presentaiton

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

* VE method implement the denoiser

« Learning to predict the noise instead of the signal using CNN layers

random noise
level

o

Noise prediction

loss
weight

l

. h|||| - % - +
I 4

raw

CNN
layers O'

skip connection

DENOISER

EN

|

mean
square

LOSS

85



Training data image

Youtube Presentaiton

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

random noise
level

o

loss
weight

CNN
layers 0

skip connection

DENOISER

A

mean
square

LOSS
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image

loss
weight
. h|||| * - + = - - %
. raw I
CNN
layers a ’
random noise A mean
level square
(0
LOSS

skip connection

DENOISER
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image

weight
- T > %
random noise A mean
level square
(o)
LOSS
VA skip connection
Implicitly CNN task is to predict the negative of the noise component in
the noise image if the noisy input goes through. DENOISER

They have explicit layers that scales the noise to the known noise level 88



Training data image

Youtube Presentaiton

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

random noise
level

o

loss

CNN itself is concerned with W weight
the noise instead of the signal
> I.lIII - * > - > *
raw I
CNN o Get an |
layers estimate the
1 clean image mean
square
LOSS

skip connection

DENOISER
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image

Huge variation in noises
— Problem in CNN loss

random noise .
level

o

mean
square

LOSS

skip connection

There's huge variations in the numerical magnitude of these input signals.

This architecture fails to account for that which is problematic DENOISER
90
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image

loss

weight
Explicit scaling to
the noise level ‘
%k . "III > % > 4+ — - *
4 raw I |
- CNN
input scal layers (9)
random noise to unit stdev A mean
level (A square
(o)
LOSS

skip connection

Not like a batch normalization or something,

we know what the noise level is and what the signal magnitude DENOISER
should be, so we divide by an appropriate formula
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image
Network only ever needs to to produce
unit stdev output. Good for learning. /i ——

| (8)

weight

* .

‘ I

input scale o
fa"dl"m ':‘Oise to unit stdev mean
- . square
|7 LOSS

skip connection
Now the network only needs to produce a unit standard deviation output.

This explicit scaling to the noise level make much easier for the network DENOISER
it can always work with these unit standard signals
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image  This is actually a good idea at a small noise levels but a
bad idea at high noise levels

loss

weight
1 9 ]
» * . I.IIII - % - + — - - %
A I raw I
) CNN
input scale layers (0} ‘
to unit stdev . mean
noise level
A square
(0]
small LOSS

skip connection

Low noise level — The noised input image
that goes through the skip connection is DENOISER
almost noise free already
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image

loss

weight

* - > %

input scale ‘
to unit stdev mean

noise level
A square
(o)

small LOSS

skip connection

CNN predicts this negative noise component
and it's scaled down by this very low noise DENOISER
level. 94
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image . . :
Clean image from input is recycled,

network output (and its error) is downweighted A

(€)™,

weight

B3 A / e
" T r | o
input scale '
to unit stdev . mean
noise level
" square
(0]
small : : LOSS
skip connection
The network is actually the only source error in this process.
y Y K DENOISER

If the network made errors, we've down scaled them.
Recycling what we already knew instead of trying to learn the identity function with the network
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image
. . Network output is vastly amplified,

along with any errors

loss

weight

e Tl > %

_ I CNN Predict

input scale layers noise ‘

_ to unit stdev s mean
noise level
. square
U (o)

LARGE LOSS

skip connection
As it's a huge noise with no signal at all, whatever come through
the skip connection is completely useless
Directly pass out of the Denoiser and introduce a huge error into DENOISER
our stepping procedure in ODE 96
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image
€ € Network output is vastly amplified,

along with any errors

Absurd Task!!

loss
weight
v

* LR

input scale

to unit stdev

noise level
'y
(0]

LARGE

skip connection

DENOISER
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Training data image

noise level

o
LARGE

loss

Somehow disable the skip connection
when the noise level is high?

skip connection

DENOISER

weight
% » h|||| - % > 4 > ¥
) I CNN [ \
input scale layers (e)
to unit stdev . mean
X square
LOSS
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Training data image

loss
weight

) CNN  Predict I
input scale layers  signal

to unit stdev . mean
= square

noise level

()
LARGE LOSS

In that case effectively the task of the CNN will be to
just predict the signal directly, there won't be any DENOISER

need to scale it up. 99
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Training data image

loss

: weight
—nid—
: ! - [
CNN

input scale layers 1  Not ‘
to unit stdev boost mean
~ square

noise level

(0}
LARGE LOSS

DENOISER
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Training data image

Youtube Presentaiton

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

noise level

(o)

*

.

I

input scale
to unit stdev

A

)

loss

weight
hllll > -+ 5= *
= 1 '
CNN
layers output scale /
i mean
square
LOSS

skip connection

DENOISER
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Architecture of Fy (any)
o.gam/ (02 + o.gala)

)
. . Output scaling cou(0) 0 - Ouaa/\/Toyy + T2
Training data image Input scaling  cin(0) 1/\/02 + 07,
)

7In(o)

Skip scaling  cgip(0

Noise cond. Chpise (O

Do(x;0) = cskip(0)x + cout(0) Fo (Cin(0)2; Cnoise (7)) Io.ssht
weig

F,

ES - "III - % - + — - %
- | ‘

A ra
) I CNN

input scale layers | output scale S &

to unit stdev -_—3 mean
noise level
A square
(o)

* — LOSS

skip connection

!

skip scale
1 to predict noise, 0 to predict signal

L\

DENOISER
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A continuous value between zero and one that
Sk,p = 1 depends on the noise level

— Means that we are predicting some kind of mixture
of a noise and the signal instead of just one of them

noise

skip=0

at low noise levels: at high noise levels:
predict noise to correct input predict signal to override input

signal




Youtube Presentaiton

Training data image

Calculating way what the optimal skip weight — Appendix in paper

... while enforcing (B)

EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

loss

weight

unit stdev output l

* 0 - < "

input scale I
noise level normalize to mean
o unit stdev must be as small square

as possible ‘C\

LOSS

skip connection

DENOISER
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.,

3 VE iDDPM____ + DDIM Ours

Sampling

ODE solver Euler Euler | Euler 2" order Heun

Time steps tien 14 gig(es—1) 02 (02in/02) N1 Wy Motzia iy 1 | Where (gn;u% uil h .
wag =D g (Omin? —Omax?))”
By \/ -ma—%l«—ﬂ*l

Schedule o(t)  VedPat?+Bmat _1 Vit t t

Scaling s(t)  1/V e3Pat?+Bmint 1 1 1

Network and preconditioning

Skip scaling cgip(o) 1 1 1 gl (0'2 +03,.)

Output scaling cou(o) —o o —0 0 - Coaa/ /Oy + T2

Input scaling  c¢o(0) 1/Ve2+1 1 1/Vo?+1 l/m

Noise cond. Cpoise(@) (M —1) 07 (0) In(30) M —1-argmin; |u; —a|  In(o)

Training
Noise distribution

Loss weighting A(o)
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

There is the couple of training details
* How should you weight the loss based on the noise level.
* How often should you show samples of different noise levels.

Training data image

loss

weight
> - - —_— - - *
noise level mean
o- square
LOSS

DENOISER
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Loss weighting and noise level distribution

backprop

2 Y -, —
S tady Y /
T AT W
© 4 ‘,‘
oo
Y
v/
General problem
network . . - PR . .
» Might have a highly lopsided distribution of like gradient feedback.
e . + If not careful on most iteration, provide the weights gently to one
1. Baseline: frequen? small direction or the other and have the massive gradient smash on the
updates on some noise levels, weights every few iterations.
infrequent large updates on That's probably very bad for your training dynamics.
others. Unhealthy training
dynamics.
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Loss weighting and noise level distribution

backprop

gradients

hezworii

1. Baseline: frequent small
updates on some noise levels,
infrequent large updates on
others. Unhealthy training
dynamics.

2. Loss weighting 3. Use noise level distribution to

equalizes gradient train the network more often at

magnitudes. noise levels where training has
impact.

The noise level distribution may how often
you show images of any given noise level.

The role of the loss weighting or the scaling, the numerical scale in

front of the loss term, should be to just equalize the magnitude of

the loss or equivalently equalize the magnitude of the gradient

feedback it gives. 108
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Lossweizhting anc noise level distribution

The role of noise level distribution is to direct
your training efforts to the levels where you
know it's relevant where you know you can
make an impact.
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Locs weliznting anc noise level distribution

We don't make much progress at very low and very high noise levels but we do make a lot of
progress in the middle.

loss at initialization

loss at end of
training
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loss =2

=
o

.~ noise level distribution

loss at initialization

U

noise level =2
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Lossweizhting anc noise level distribution

Very broad distribution of noise levels here that are targeted towards the levels
where you know you can make progress

This is a logarithmic scale on the x-axis. so it's a log normal distribution

loss at initialization

noise level

distribution
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VP VE iDDPM___+ DDIM Ours
Sampling
ODE solver Euler Euler Euler 2" order Heun
. - ' L

Time steps tien 14+ (e —1) O (OEnlot) ™™ U o4 Moizsa 1 s Where (an:“p + . -
uy =10 ﬁ(amin"_amax" )
uj-1= W“

Schedule o(t)  VetPit?+Bmt _1 Vi t t

Scaling s(t)  1/Ve¥Pat?+Bumit 1 1 1

Network and preconditioning

Skip scaling cgqp(o) 1 1 1 03/ (0% +0l.)

Output scaling con(c) —o o -0 o- a'd,m./\/a'm,2 + o2

Input scaling  en(0) 1/vVoZ +1 1 1/Vo?+1 1/\/o? + o2,

Noise cond. cpoise(0) (M —1) 67 (0) In(30) M —1-argmin; |u; —o|  §In(o)

Training

Noise distribution o o) ~U(e,1)  In(o)~U(In(owin). o=uj, j~U{O,M-1} In(o)~N(Ppews P)

In(omax))
Loss weighting A(o) 1/0? 1/o = 1/6%  (note: *) (02+03,,) /(0 - Ogaa)®
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Overfitting and Augmentations
* Network can overfit to dataset
» Solution : non-leakikng augmentation ideas borrowed from GAN literature

T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila. Training generative
adversarial networks with limited data. In Proc. NeurlPS, 2020.

Dataset

|

MSE loss

Augmentation
pipeline

— IIIIIII—>

denoiser

Augmented
T samples
random

augmentation
parameters
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Training GANs With Limited Data, StyleGAN2 with Adaptive Discriminator Augmentation (ADA) https://medium.com/swih/training-gans-with-limited-data-22a7c8ffce78

https://lyun905.tistory.com/56

Non-leakikng augmentation & ADA(Adaptive Discriminator Augmentation)

OOk training datalf| 90k 3|™0|2t= augmentation= FH,
generator= 90T =017t O|0|X|E AL 0|42 leakingO|

211 3T}, Discriminator?t augmentationl 0|0| X[t T2X| 9

2 O|0JX|E F+&otX| ZotA == AO|Lt.
- Non-leaking augmentation2= 2{si{A{= 0|0|X|0|

transformation2 7t5tk|, 1 transformation0| && X 2| #H

OllM invertibledliOf StCt. Invertible$t augmentationS 71342
AL training 2PH0|lM Z 0| corruptionS Z2{LH afo| &£
BE & shaolA =Ioial ot

+ 7Hd ZA| 0|0|X|2] 90%E 02= DtE= HEts ST SHAL 1

2/ 90%2| Z2 0|0|X|E M|2lst 10%2| 2%t O|0|X|E &=
2 11, 71 augmentation= undo & = QIL}. 0| A2 SHE 21
O| Z™0f|M invertible$t E18H9| 04|O|Ct. O|EHO|= {0, 90, 180,
270} & 2xiQ|2 B2} 0|0|X|E §|XM3t= augmentation= A4
Zio= AL J12{H RO WeksS Ve = Q22 undod = €l
1, [M2tA invertiblestX| 4Lt 0|2 augmentationHA=
leakingO| 2rAI5IH| EICt.

« 0J7|A, augmentation2 p2| =2 MESICtT 5tAL 1 H g
HE|X| 942 O[0[X[2| Ji4=7t SO{LIEZ LIt O[0|X|E T2 =
1, invertiblestA =Lt CEA] 2ol 0 augmentationO| p 2}
Ofl 2} leaking & == /11 non-leaking & 4= QICH= Z=0|CH

Invertible Transformation Non-Invertible Transformation

Aug. generated 7 x Aug. real Ty Aug. generated 7 x Aug. real Ty

The generator is forced to match the fake distribution x to the real
distribution y in order to match the transformed distributions Tx and Ty.

If we apply an invertible transformation T to the generated and real
distributions x and y, then it is sufficient to match augmented distributions
Tx and Ty in order to match the original distributions x and y.

Theoretically, if the augmentation operator T is “invertible”, there exists one
and only one x for the augmented distribution Tx, and there should be no
‘leaks” in x. However, in practice, due to limitations of finite sampling, finite
representational power of the networks, inductive bias and training
dynamics, very high values of p leads to leaking of augmentations in the
generated images.
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Training GANs With Limited Data, StyleGAN2 with Adaptive Discriminator Augmentation (ADA)

https://medium.com/swlh/training-gans-with-limited-data-22a7c8ffce78
https://lyun905.tistory.com/56

Non-leakikng augmentation & ADA(Adaptive Discriminator Augmentation)

D(x)

D(x)
6 61
] 44
2 _—’_’—_’—_’_’_’___’—S/——P"_’* 5
0 —)’ ********************* e e 0
2% e Y
—_—e 2
44 i
e — Real — Generated -6
[ Real [ Generated
t=0M 2M 4M 6M M 10M 12M 14M
D(x) D(x)
6 64
44 %
2 4\—___——_’_’—’—~_’—4’——"_/_——#’— >
e = — —— il

— Real — Generated -6
= bicatilic [ Real [ Generated

(=0M  2M aM 6M aM I0M  12M  14M

Figure. As the training progresses, the overlap between
discriminator output distributions for real and generated
images decreases

FID median/min/max (3 runs)

FID

=
s

50 4

N

— Real — Generated — Validation -+ Best FID

— Real — Generated — Validation -+ Best FID

t=0M IM sM 10M ISM  20M
Training progress (number of reals shown to D)

(a) Convergence of FFHQ (256 X 256)

25M t=0M 2M 4M  6M  8M
Training progress (reals shown to D)

10M 12M 14M t=0M 2M 4M  6M 8M  10M 12M 14M
Training progress (reals shown to D)

(b) Discriminator outputs, S0k  (c) Discriminator outputs, 20k

The standard way of quantifying overfitting is to use a separate validation set and
observe its behavior relative to the training set. When overfitting kicks in, the
validation set starts to behave increasingly like the generated images, and the
discriminator outputs for real and generated samples begin to diverge.

Figure (a) : CIO|Ef =2 452 U1 LESt HAE 7IX| 12 UZ. B2 HIO|E M= training0|
divergegt.

Figure (b)2t (c) : Discriminator output@ £ discriminator overfitting0| Y0{LI= A2 &2l
gt £ Q13 Discriminator?t M2 £=2| training data0li| overfit=|0{A] overlap0| 1HX|H FID

=2 T MO-

5t OF A Ol
T otEes 2 & U

Ol

116



Training GANs With Limited Data, StyleGAN2 with Adaptive Discriminator Augmentation (ADA)

https://medium.com/swlh/training-gans-with-limited-data-22a7c8ffce78
https://yun905.tistory.com/56

Non-leakikng augmentation & ADA(Adaptive Discriminator Augmentation)

Two plausible overfitting heuristics to measure overfitting

. ]E[Dtrain] — ]E[Dvalidation]
° ]E[D train] - ]E[Dgcneratcd]

rt = E[sign(Diain) ]

» The first heuristic rv, expresses the output for a validation set relative
to the training set and generated images. The numerator is 0 when
the training and validation set behave exactly the same, hence r=0
means no overfitting. The numerator and denominator are the same
when the generated and validation set behave exactly the same,
hence r=1 indicates complete overfitting.

+ Since it assumes the existence of a separate validation set in an
already small dataset, it is not feasible to calculate the rv heuristic.
Hence, the authors turn to rt - which estimates the portion of the
training set that gets positive discriminator outputs - to identify
overfitting and dynamically adapt the augmentation probability p as
the training progresses:

* rttoo high — augment more (increase p)
* rt too low — augment less (decrease p)

LIZ2 TIX| H|wE 2ot 410110, N2 CHERO| AN LEZRS ALZOIRUL.
IOl A2 validation set2 LR Z 517 ME0]| limited datasetti|A] HE317| &= £.20|
ULt

£ CH0~12] B 2{0flA{ 10|H discriminator overfittingO| OHL A5t 740|311 00|H & Gl= 2
O|Ct. Overfiting0| AlsHEI4-Z discriminator? | validation setS generated image2t1! THEt
SiCh= A= l0lM 2RIHCE O] AR r_vi= 10| EICE. r_toflA sign0| 22 0|R= HX| 1F
Al otH 2 MEIN|IA & sensitivest” | THZ0|LCY.

0
0

023t heuristic?| target valueZ 0~1 At0|2] Q12|0| Zfo 2 H5I1, 1 3t
adaptivedtH| ZHoh= 4= ADARIL BTt

7|ZOR pf

If
If
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When using the network in SDE/ODE
solve, disable augmentations

-

(7))

(%)
o

(W]

S

- Jimil]— - Jimil]—
denoiser denoiser
Augmented
samples I 1
(disable (disable

augmentations) augmentations)
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Evaluation of training (deterministic sampling)

CIFAR-10 [28] at 32x 32 FFHQ [26] 64 x 64 AFHQV2 [7] 64 x64

Conditional Unconditional Unconditional Unconditional
Training configuration VP VE VP VE VP VE VP VE
A Baseline [42] (" pre-trained) 248 3.11 3.01* 3.77° 3.39 25.95 2.58 18.52
B + Adjust hyperparameters 2.18 248 251 294 3.13 22.53 243 23.12
C + Redistribute capacity 208 252 231 283 2.78 41.62 2.54 15.04
D + Our preconditioning 209 264 229 3.10 294 3.39 2.79 3.81
E + Our loss function 1.88 1.86 205 1.99 2.60 2.81 2.29 2.28
F + Non-leaky augmentation | = L.79 — 1.79 1.97 = 1.98 2.39 253 1.96 2.16
NFE 35 35 35 35 79 79 79 79

ImagenEt 64 X 64 (StOChaStiC Sampling) With deterministic sampling when we enabled

the stochastic sampling and tailor it for these
F | D 1 36 architectures for ImageNet and use this
. state of the art FID

retrained these networks we trained ourselves
using these principles, We get a FID of 1.36.
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

s stochasticity still helpful?

CIFAR-10: no Imagenet: yes

FID FID
15 — VP, original — VP, our model 51266 | — Original — Our model |
' — VE, original — VE, our model ’
2.4
3.5 0042
2.0
3.0
1.8
25 1.6
14
2. 1.2

Sehun=0 10 20 30 40 50 60 70 &80 90 100 Sgum=0 10 20 30 40 50 60 70 80 90 100

best FID at zero stochasticity
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EDM : Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022.

Conclusions

* Modular design of diffusion models
* Training, and sampling and network architectures are not tightly coupled

* Careful design of each “module” yields considerable improvements
* Stochasticity is a double-edged sword

* Higher resolutions, network architectures, conditioning/guidance,
large scale datasets, ... ?
* Ripe for principled analysis of foundations
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